Nonlinear Dynamics of an Electrorheological Sandwich Beam with Rotary Oscillation

نویسندگان

  • Kexiang Wei
  • Wenming Zhang
  • Ping Xia
  • Yingchun Liu
چکیده

The dynamic characteristics and parametric instability of a rotating electrorheological ER sandwich beam with rotary oscillation are numerically analyzed. Assuming that the angular velocity of an ER sandwich beam varies harmonically, the dynamic equation of the rotating beam is first derived based on Hamilton’s principle. Then the coupling and nonlinear equation is discretized and solved by the finite element method. The multiple scales method is employed to determine the parametric instability of the structures. The effects of electric field on the natural frequencies, loss factor, and regions of parametric instability are presented. The results obtained indicate that the ER material layer has a significant effect on the vibration characteristics and parametric instability regions, and the ER material can be used to adjust the dynamic characteristics and stability of the rotating flexible beams.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Free vibrations analysis of a sandwich rectangular plate with electrorheological fluid core

In this paper, a rectangular sandwich plate with a constrained layer and an electrorheological (ER) fluid core is investigated. The rectangular plate is covered an ER fluid core and a constraining layer to improve the stability of the system. The two outer layers of the sandwich structure are elastic. The viscoelastic materials express the middle layer behavior under electric field and small st...

متن کامل

The Transient Dynamics of a Beam Mounted on Spring Supports and Equipped with the Nonlinear Energy Sink

The transient dynamics of a beam mounted on springer-damper support and equipped with a nonlinear energy sink (NES) is investigated under the effects of shock loads. The equations of motion are derived using the Hamilton’s principle leading to four hybrid ordinary and partial differential equations and descritized using the Galerkin method. An adaptive Newmark method is employed for accurate an...

متن کامل

Nonlinear Vibration Analysis of a cantilever beam with nonlinear geometry

Analyzing the nonlinear vibration of beams is one of the important issues in structural engineering. According to this, an impressive analytical method which is called Modified Iteration Perturbation Method (MIPM) is used to obtain the behavior and frequency of a cantilever beam with geometric nonlinear. This new method is combined by the Mickens and Iteration methods. Moreover, this method don...

متن کامل

Dynamics Analysis of the Steady and Transient States of a Nonlinear Piezoelectric Beam by a Finite Element Method

This paper presents a finite element formulation for the dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam. A piezoelectric beam with damping is studied under harmonic excitation. A numerical method is used for this analysis. In the paper, the central difference formula of four order is used and compared with the central difference formula of two order in th...

متن کامل

Solution of strongly nonlinear oscillator problem arising in Plasma Physics with Newton Harmonic Balance Method

In this paper, Newton Harmonic Balance Method (NHBM) is applied to obtain the analytical solution for an electron beam injected into a plasma tube where the magnetic field is cylindrical and increases towards the axis in inverse proportion to the radius. Periodic solution is analytically verified and consequently the relation between the Natural Frequency and the amplitude is obtained in an ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012